
DeCaf: A Causal Decoupling Framework for OOD Generalization
on Node Classification

Xiaoxue Han Huzefa Rangwala Yue Ning
Stevens Institute of Technology Amazon; George Mason University Stevens Institute of Technology

Abstract

Graph Neural Networks (GNNs) are suscep-
tible to distribution shifts, creating vulnera-
bility and security issues in critical domains.
There is a pressing need to enhance the gen-
eralizability of GNNs on out-of-distribution
(OOD) test data. Existing methods that tar-
get learning an invariant (feature, structure)-
label mapping often depend on oversimplified
assumptions about the data generation pro-
cess, which do not adequately reflect the ac-
tual dynamics of distribution shifts in graphs.
In this paper, we introduce a more realis-
tic graph data generation model using Struc-
tural Causal Models (SCMs), allowing us
to redefine distribution shifts by pinpoint-
ing their origins within the generation pro-
cess. Building on this, we propose a casual
decoupling framework, DeCaf , that inde-
pendently learns unbiased feature-label and
structure-label mappings. We provide a de-
tailed theoretical framework that shows how
our approach can effectively mitigate the im-
pact of various distribution shifts. We eval-
uate DeCaf across both real-world and syn-
thetic datasets that demonstrate different
patterns of shifts, confirming its efficacy in
enhancing the generalizability of GNNs.

1 Introduction

Graph Neural Networks (GNNs) perform node clas-
sification tasks by learning the relationships between
node features, local structures, and node labels on a
training graph. They have demonstrated promising
performance across various applications, such as so-
cial recommendation, traffic forecasting, and chemical

Proceedings of the 28th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2025, Mai Khao,
Thailand. PMLR: Volume 258. Copyright 2025 by the au-
thor(s).

property prediction [Wu et al., 2021]. However, their
success largely relies on the in-distribution (ID) as-
sumption [Liu et al., 2023]. In real life, test samples
are often collected from different distributions such as
various geographical areas, domains, or time periods,
leading to potentially different and unknown distri-
butions from the training data. Consequently, the
model might learn an incorrect mapping of (feature,
structure)-label relationships that fail on test data,
leading to a well-known out-of-distribution (OOD)
problem [Arjovsky et al., 2020].

One de facto approach to graph OOD gener-
alization [Bai et al., 2021, Krueger et al., 2020,
Sagawa et al., 2019, Shen et al., 2021, Ye et al., 2021]
assumes that there exist “true” correlations between
input and labels that are invariant under distribu-
tion shifts. These correlations can be obtained by
identifying the non-causal/spurious parts of the input
(e.g. sub-ego-networks or subvectors of the node’s
embedding). However, they model the features of
a node and its neighborhood as a single entity. By
doing so, they implicitly assume that the shifts in
features (X) and structures (A) occur simultaneously
and cannot be separated from one another. A detailed
discussion on the limitations of existing methods is
provided in Appendix A.1.

However, we claim that such an assumption may fail
on many real-world graphs (e.g., citation graphs, so-
cial networks). The generation process of graph data
is complex: for a node, its features and local topology
can be viewed as reflections of its true representations
by different “observers”. For example, to predict
whether someone might be prone to drug addiction
based on their online social networks, we can analyze
their profile features (e.g., job, social status, photos) as
the public image they choose to present. The accounts
they follow can indicate additional aspects (e.g., hob-
bies, personal life, mental status) not explicitly stated
in their profiles. Both the profile features and their
network connections provide insights into the user’s
true status, but they highlight different facets through
distinct mappings. Together, they offer valuable infor-

DeCaf: A Framework for OOD Generalization

mation for predicting the target behavior. However,
these elements may display varying distribution pat-
terns over time or across different locations. For in-
stance, individuals might disclose different profile in-
formation depending on state laws, or their network
connections might change following updates to the so-
cial network’s recommendation algorithm. Such vari-
ations can occur separately and both impact the orig-
inal (feature, structure)-label relationships.

We formalize the graph generation process as a Struc-
tural Causal Model (SCM). Based on the graph
generation process, we redefine the types of distri-
bution shifts. Previously, graph OOD largely fol-
lowed definitions from general data: for covariate
shift, P train(X,A) ̸= P test(X,A); for concept shift,
P train(Y|X,A) ̸= P test(Y|X,A) [Gui et al., 2022].
We reformulate the definition, attributing covariate
shift to changes in the true representations, and de-
fine two types of concept shift based on the different
mappings of features and structure, respectively. We
justify the universality of our new definitions.

To this end, we demonstrate that any type of distribu-
tion shift can alter the (feature, structure)-label map-
ping. However, we observe that because the generat-
ing mechanism of the features or structures does not
change, the true feature-label or structure-label map-
pings should remain invariant. Based on this observa-
tion, we propose a causal decoupling framework, De-
Caf , that learns unbiased feature-label or structure-
label mappings as causal effects for predicting node la-
bels. Intuitively, DeCaf answers the question: “What
information about the label can the node features pro-
vide when its local structure is unavailable, and vice
versa?” We provide a theoretical analysis to demon-
strate the feasibility and effectiveness of DeCaf . We
also present an implementable paradigm of DeCaf
that utilizes Generalized Robinson Decomposition to
estimate the causal effects as a practical solution. We
evaluate our proposed method across both real-world
and synthetic datasets with different patterns of shifts.
The results consistently demonstrate that our pro-
posed method improves the generalization ability of
GNNs on the node classification task.

2 Casual Decoupling Framework

In this section, we introduce the causal decoupling
framework, DeCaf , which performs node classifica-
tion by independently estimating the treatment effects
of node features and neighborhood representations.
We develop a comprehensive theoretical foundation
to support the rationale: Initially, we present a novel
graph generation process using a Structural Causal
Model (SCM), which contrasts with the assumptions

𝒙

𝒚

𝒂

𝒛

𝒙

𝒉𝑨𝒂
𝒙

𝒉𝒚

𝒂

𝒂

𝒉𝒚

𝒙

Data Generation Casual Effect Estimation

𝑝 𝑦 x, 𝑎 = 𝜎(Ψ(𝑥, 𝑎))

Ψ 𝑥, 𝑎 = 𝛾Ψ𝑋 𝑥 + (1 − 𝛾)Ψ𝐴(𝑎)

Ψ𝑋 𝑥 = 𝜏(𝑥′, 𝑥, 𝑎)

Ψ𝐴 𝑥 = 𝜏(𝑎′, 𝑎, 𝑥)

𝐴𝐺𝐺(𝒙, 𝒂) 𝒚

𝑝 𝑦 𝑥, 𝑎 = Φ(𝐴𝐺𝐺(𝑥, 𝑎))

Graph Decoupling

M
P

G
N

N
D

eC
a
f

⊕

𝒉𝑿 𝛾

1 − 𝛾

𝒉𝒚
𝜎(∙)

Ψ𝑋 ∙

Ψ𝐴 ∙
𝒚

Figure 1: An overview of the conceptual flow. First,
we introduce a new data generation process with the
SCM. We separately estimate the individual impact of
the node features and neighborhood representations
on node labels in graph decoupling. To achieve an un-
biased estimation of their impact, we propose to treat
the impact as a treatment effect, which can be esti-
mated with a casual estimation model that considers
the confounding effect.

underlying most GNN models (section 2.1). Utiliz-
ing this SCM, we redefine various types of distri-
bution shifts in graph data and analyze how each
SCM element changes under these shifts (Section 2.2).
This analysis leads to the development of the causal
decoupling framework, which seeks to separately
assess the direct impacts of node features and neigh-
borhood representations on node labels (section 2.3).
To achieve an unbiased estimation of their impact, we
treat the impact as a treatment effect, which can be
estimated with a casual estimation model that con-
siders the confounder effect (section 2.4). We visually
summarize this conceptual flow in Figure 1. Following
this theoretical basis, we propose a practical end-to-
end paradigm that leverages SOTA casual inference
technologies to estimate the decoupled representations
and make final predictions, as detailed in Section 2.4.

2.1 Graph generation process

We build a SCM for graph generation processes based
on the assumption that for each node vi, there exists
an unobserved raw latent vector zi ∈ Rp that is fully
informative about its “true nature”, and its ground-
truth label, yi ∈ Rk, is an affine transformation of
zi to the label space. For a connected graph G =
(V, E), where V is the node set and E is the edge set,
we directly observe node features X ∈ Rn×d, and the
adjacency matrix A ∈ {0, 1}n×n. Although the latent
variable matrix Z ∈ Rn×p cannot be directly observed,
we believe there exists a “hidden observer” that can
observe Z and decide X and A based on some rules.

Definition 1. The “true nature”, denoted as z, is an
unobserved latent variable representing “all facts” (ex-
trinsic or intrinsic) about a node in a graph. For a

Xiaoxue Han, Huzefa Rangwala, Yue Ning

node instance vi, knowing zi provides sufficient infor-
mation about its features fi and its connectivity with
any other node uj as Aij. Specifically, there exists a
function such that xi = f(zi) and a function such that
Aij = g(zi, zj).

An intuitive example. A person’s “true nature”
would encompass not only extrinsic details like gen-
der and education but also intrinsic qualities such as
personality and beliefs. These intrinsic features are
difficult to measure directly and completely, yet they
largely influence a person’s public profile (e.g., per-
sonal webpage) and social relationships (e.g., friend-
ships). For example, the content of a personal webpage
is shaped not only by true experiences but also by the
individual’s personality, which affects how those expe-
riences are presented. Understanding a person’s true
nature provides a complete view of their behaviors.

For simplicity of analysis, we assume the features of
node vi, xi, is an affine transformation of zi, and Aij
is decided by the similarity between some linear trans-
formations of zi and zj .

Assumption 1. The generation process of (X,Y,A)
given Z can be expressed as follows:

xi =Mfzi + bf , (1)

yi =Myzi + by, (2)

p(Aij = 1) = c ·
(
∥Mszi,Mozj∥22 + 1

)−1
, (3)

where Mf ∈ Zd×p, My ∈ Zk×p, Ms ∈ Zq×p, and
Mo ∈ Zq×p are constant linear transformation matri-
ces, bf ∈ Rd and by ∈ Rk are constant vectors, ∥ · ∥22
is euclidean distance, and 0 ≤ c ≤ 1 is a constant
number to control the density of the adjacency matrix.

We claim that Assumption 1 can be generalized to
different scenarios. For instance, a homophilous graph
would have Mo Ms assigned with the same values
as My; conversely, a heterophilous graph would have
Mo and Ms to be opposite with each other; when
Mo orMs are assigned with values close to zeros, the
connection will show more randomized behaviors.

According to Assumption 1, node vi’s feature xi is
only dependent on zi; however, its connection with
other nodes depends on the latent variable Z of the
whole graph, and it seemingly brings spill-over ef-
fects/inferences, which occurs when the treatment re-
ceived by one instance affects the outcome of another
instance. This effect breaks Stable Unit Treatment
Value Assumption (SUTVA) that the potential out-
comes of any unit do not vary with the treatment as-
signed to other units. It is one of the core assumptions
in causal inference as we will discuss in section 2.4. To
address this, we investigate the correlation between the

Casual link Pseudo-casual link

original SCM modified SCM

𝒙𝒙

𝒂 𝒂

𝒛𝒛 𝒚 𝒚

SCM-X SCM-A

𝒙

𝒂

𝒉𝒚

𝒂

𝒙

𝒉𝒚

(a) (b)

Figure 2: (a) SCMs represent a node’s data generation
process. (a-left) is the original SCM, and (a-right) is
the modified SCM by replacing the causal link between
z and y with pseudo-casual links. (b) The two-view
SCMs for the casual effect estimation. For SCM-X, a
is the treatment, and x is the confounder. For SCM-A,
the treatment and the confounder are reversed.

features of a central node and its neighboring nodes.
As the adjacent matrix A does not contain the features
of neighboring nodes, we define an embedding matrix

ai = agg({Mazj}) where j ∈ N 1
i ∪N 2

i ...N l
i , (4)

where ai is the i-th vector of A which represents the
neighborhood information of all nodes,Ma is a linear
transformation matrix, and N l

i is the node set of l-hop
neighbors of node vi. agg(·) is an aggregation function
(e.g. mean). Although this may introduce undesired
correlations between samples that complicate our anal-
ysis, we show that under the Law of Large Numbers,
ai experiences negligible spillover effects from other
samples. Further details are discussed in Appendix D.

To this end, we build a SCM in Figure 2 (a-left) to
represent the relationships between the variables z,
x, a, and y. When developing a machine learning
model, the Close World Assumption is generally fol-
lowed, that the training data encompasses sufficient
information to make accurate predictions. Applying
that to our case, given the unobservability of z, we
need to assume that all features within z pertinent to
y are recoverable through x and a. For the conve-
nience of our narrative, we assume z is directly caused
by a and x, and we replace the causal link between z
and y with pseudo-causal links x 99K y and a 99K y.
Future analysis is based on the modified SCM
in Figure 2 (a-right). Based on the modified SCM,
the correlation between x and y is constituted by two
back door paths: x ← z → y and x ← z → a → y.
Similarly, the correlation between a and y is consti-
tuted by a ← z → y, a ← z → x → y. For the paths
x ← z → y and a ← z → y, z is the common cause
(confounder) of a and x.

2.2 Types of distribution shifts on graph data

Based on the proposed SCM, we redefine the covari-
ate shift and the concept shift on graph data. Bearing
in mind that OOD generalization is impossible with-
out any assumption in the data generalization process,

DeCaf: A Framework for OOD Generalization

we make a constraint such that the conditional distri-
bution between the latent variable z and the ground
truth label y should remain invariant across differ-
ent domains (e.g. Mtrain

y = Mtest
y , btrain

y = btest
y or

P train(y|z) = P test(y|z)). We justify it by pointing
out that both z and y characterize the intrinsic nature
of the data point, and the invariance of their correla-
tion is necessary to ensure that OOD generalization
is possible. Starting with that, we identify different
sources of distribution shifts. We attribute covariate
shift to the drift of the latent variable z.

Definition 2. (Covariate Shift): P train(z) ̸= P test(z)
while Mx,bx,Ms,bs,Mo,bo remain the same for
training and test data.

We attribute concept shift to the changes in the gen-
eration process of node features or the edges with a
fixed z distribution. We define each case, separately.

Definition 3. (Concept Shift-X): P train(z) = P test(z)
while (Mtrain

x ,btrain
x) ̸= (Mtest

x ,btest
x) and the rest pa-

rameters remain the same.

Definition 4. (Concept Shift-A): P train(z) = P test(z)
while (Mtrain

s ,btrain
s) ̸= (Mtest

s ,btest
s) and the rest pa-

rameters remain the same.

We investigate and summarize the behavior of the
joint distribution of x and a and the relations between
other variables under different distribution shifts in
Appendix E. As it shows, under all three types of
distribution shifts, the distribution p(y|a,x) changes,
thus the directly estimated correlation between y and
a,x with the training set may fail in the test set. On
the other hand, at least one of p(y|x) and p(y|a) re-
mains constant under the shifts.

2.3 Graph decoupling

We propose to estimate p(y|a,x) as the combination
of p(y|x) and p(y|a). However, when predicting with
a graph neural network, p(y|a,x) is often modeled
as σ(hy) = σ(Ψ(a,x)), where hy = Ψ(·) represents
the output embedding of the GNN model before the
activation, and σ(·) is the non-linear activation func-
tion. Due to the non-linearity of σ(·), the assumption
that p(y|a,x) can be estimated as the combination of
p(y|x) and p(y|a) can be easily violated. Also, the
mapping to the probability space before the combina-
tion could potentially lose the rich information deliv-
ered by the embedding space. To address this, we per-
form the combination process in the embedding space
instead.

Assumption 2. The value of Ψ(x,a) can be estimated
as the weighted average of the values of individual func-
tions Ψx(x) and Ψa(a).

Ψ(x,a) = γ ·Ψx(x) + (1− γ) ·Ψa(a), (5)

where 0 ≤ γ ≤ 1 is a constant hyperparamter that
controls the ratio between the contribution of Ψx(x)
and Ψa(a) to the final prediction.

We claim that Assumption 2 is a reasonable assump-
tion when Ψ(x,a) is modeled with message-passing
graph neural networks (MPGNNs). Most MPGNNs
obtain the representation of the central node by aggre-
gating its neighboring nodes with operations like sum-
ming or (weighted) averaging, which can be viewed
as a process in which each central/neighboring node
shares its “vote” on deciding the outcome. To better
make our point, we analyze classification on the Sim-
ple Graph Convolution (SGC) model [Wu et al., 2019].
We show that when a fixed weight γ is assigned to the
central node during the aggregation process, the pre-
diction function of SGC can be written as:

σ
(
γ [(D̃k)−

1
2AÃk(D̃k)

1
2XΘ]i︸ ︷︷ ︸

Ψa(ai)

+(1− γ) [((D̃k)−
1
2 I(D̃k)

1
2)kXΘ]i︸ ︷︷ ︸

Ψx(xi)

)
,

(6)

where ŷ = σ(SkXΘ), S is the “normalized” adjacency

matrix S = D̃− 1
2 ÃD̃

1
2 , Ã = A+I, D̃ is the degree ma-

trix of Ã, k is the number of layers, Θ is the parame-
terized weights of each layer into a single matrix: Θ =
Θ0Θ1...Θk. We can view [(D̃k)−

1
2AÃk(D̃k)

1
2XΘ]i as

Ψa(ai), and [((D̃k)−
1
2 I(D̃k)

1
2)kXΘ]i as Ψx(xi), which

aligns with asssumtion 2. Notice for Ψa(ai) the adja-
cency matrix at the first layer does not include self-
loops, ensuring that the node feature of the instance
itself is not included.

We thus claim that Assumption 2 is reasonable. Note
that it only holds when Ψx(·) and Ψa(·) are unbi-
ased estimations. As shown in Figure 2 (a), a and
x are caused by a common factor z, thus they act
like confounders of each other through back-door paths
x ← z → a → y and a ← z → x → y. The direct
estimation of Ψ(x) and Ψ(a) is biased. In the next sec-
tion, we aim to obtain unbiased estimations of Ψx(·)
and Ψa(·) by considering the confounder effect.

2.4 Casual effect estimation

To clearly understand how changing a/x directly in-
fluences hy while considering and adjusting for other
confounding factors, we propose to treat Ψx(x) and
Ψa(ai) as treatment effect of x and a on the outcome
hy (Section. 2.3). In a generalized causal effect esti-
mation framework where the treatment can be a con-
tinuous representation instead of binary values, we can
interpret the effect of treatment t as “what additional

Xiaoxue Han, Huzefa Rangwala, Yue Ning

information t can provide on predicting the outcome”.
In that sense, we want to estimate the treatment effect
of x and a, separately, so each can provide information
about the output representation when conditioned on
one another. We build two Structural Casual Models
to represent the cases where one of x/a is the treat-
ment and another is the confounder, as shown in Fig-
ure 2 (b). Based on the SCMs, we aim to utilize casual
effect inference to estimate the following Conditional
Average Treatment Effects (CATEs):

Ψa(a) ≜τ(a
′,a,x)

=E[hy|C = x, do(T = a)]

−E[hy|C = x, do(T = a′)],

(7)

Ψx(x) ≜τ(x
′,x,a)

=E[hy|C = a, do(T = x)]

−E[hy|C = a, do(T = x′)],

(8)

where x′ and a′ are counterfactual node features and
neighborhood representations. Their definitions will
be discussed later. Since the counterfactual outcome
is unobservable, we follow the common practice and
made the assumptions in Appendix F to estimate the
CATEs.

We then propose a practical solution to estimate
τ(a′,a,x) and τ(x′,x,a), and combine them to make
predictions. We apply Generalized Robinson Decom-
position (GRD) to isolate the causal estimands and
reduce the biases when estimating CATEs.

Generalized Robinson Decomposition. GRD is pro-
posed as a generalized version of Robinson Decomposi-
tion [Robinson, 1988] to adapt graph-structured treat-
ment. Specifically, GRD assumes that the causal effect
is a product effect:

Assumption 3. (Product Effect) We consider the fol-
lowing partial parameterization of p(y|c, t):

y = g(c)⊤h(t) + ε, (9)

where t, c are the representation of the treatment and
the confounder; g : C → Rd, h : T → Rd and
E[ε|c, t] = E[ε|c] = 0, for all (c, t) ∈ C × T .

Assumption 3 has been proven to be mild and can
approximate any arbitrary bounded continuous func-
tions with a small error bound [Kaddour et al., 2021].
We define propensity features as e(c) ≜ E[h(t)|c] and
m(c) ≜ E[y|c] = g(c)⊤e(c). Following the same steps
as in Robinson Decomposition, the GRD of Equation
9 is: y−m(c) = g(c)⊤(h(t)−e(c))+ε. Given nuisance
estimates m̂(·) and ê(·), g(·) and h(·) can be derived

with the optimization problem:

ĝ(·), ĥ(·) ≜ argmin
g,h{

1

n

n∑
i=1

(
yi − m̂(ci)− g(ci)⊤

(
h(ti)− ê(ci)

))2}
(10)

With estimated g(·) and h(·), the CATE of treatment
variable t and its counterfactual t′ given the con-
founder c can be simplified as:

τ(t′, t, c) = g(c)⊤ (h(t′)− h(t)) . (11)

To optimize Equation 10, we can use Structured Inter-
vention Networks (SIN) [Kaddour et al., 2021], a two-
stage training algorithm to learn g(·) and h(·) as neu-
ral networks and estimate the CATE with Equation
11. In our case, we need to estimate separate set de-
composition functions, g(·) and h(·), for each casual
model, and to apply SIN directly would bring the fol-
lowing drawbacks: 1) By separately applying SIN to
our two casual models, it would fail to share the repre-
sentations of the common factors (e.g. the confounder
of one model is the treatment of another); the lack
of knowledge sharing could make the learning process
less efficient and the learned model prone to overfit-
ting. 2) Unlikely common scenarios where counterfac-
tual treatments are well-defined, in our case, f ′ and a′

can not be easily decided. Since they are both continu-
ous values that can span the space, how to define their
values in the situation where the node is not treated by
the treatment (node features/neighborhood representa-
tions)? To address these two problems, we propose
Dual Casual Decomposition and Background Counter-
factual Selection as components of our method.

2.4.1 Dual casual decomposition

We aim to learn two sets of g(·), h(·) for SCM-
X and SCM-A. We denote them as gX(·), hX(·)
and gA(·), hA(·), separately. Each casual model is
also associated with a set of e(·),m(·), denoted as
eX(·),mX(·) and eA(·),mA(·). Observing that directly
applying SIN separately could double the training time
and be inefficient, we notice that for our two SCMs,
the treatment of one model is the confounder of the
other. Leveraging this fact, we allow the embedding
of the same entity to be shared across the two mod-
els. We propose a new paradigm, named Dual Causal
Decomposition, which first learns the common embed-
ding of the two models and then applies a lighter dual
version of SIN to estimate the remaining embedding.
Our approach effectively reduces model parameters.
The complete process is provided in Appendix H.

DeCaf: A Framework for OOD Generalization

2.4.2 Background counterfactual selection

We view the treatment effect as useful information pro-
vided by the treatment variables for decision-making
in predictions. At each of the casual models, the fac-
tual treatment (a or x) received by an instance reveals
information about its label. In the counterfactual “un-
treated” case, the treatment representation should re-
veal no such information. It is problematic to simply
set the counterfactual representation as zeros since an
all-zeros embedding does not necessarily mean the ab-
sence of information. Instead, for each instance, at
each time, we randomly sample a treatment represen-
tation from the whole dataset, and we answer the ques-
tion: what net effect does the factual treatment bring
compared to the random counterfactual treatment? We
repeat the above process multiple times and average
the net effects as the estimated treatment effect.

Specifically, for SCM-A, we randomly sample k neigh-
borhood representations with indexes s1, ..., sk from
the datasets as the counterfactual treatment. The
counterfactual outcome is then estimated as follows:

E[hy|C = a, do(T = x′)] ≜
1

k

k∑
i=1

gA(asi)
⊤hA(fsi).

(12)
Similarly, for SCM-X, the counterfactual outcome is
estimated as:

E[hy|C = x, do(T = a′)] ≜
1

k

k∑
i=1

gX(fsi)
⊤hX(asi).

(13)

We then estimate Ψa(a) and Ψx(x) with Equation 7
and 8 and make a prediction:

ŷ = σ
(
γ ·Ψx(x) + (1− γ) ·Ψa(a)

)
. (14)

We provide the pseudo-code for DeCaf in Algorithm
1, and a summary of important notations in Table 5.

3 Experiments

To evaluate the effectiveness of DeCaf , we aim to an-
swer the following research questions (RQs): RQ1:
How well can DeCaf handle covariate shift? RQ2:
How well can DeCaf handle concept shift? RQ3:
How does the confounder effect between node feature
x and the neighborhood representation a impact the
performance of different models, and how well canDe-
Caf handle this confounder effect?

3.1 Comparison methods

We compare DeCaf with SOTA Graph OOD general-
ization methods that are applicable to the node clas-
sification including IRM [Arjovsky et al., 2020], REX

[Krueger et al., 2020], EERM [Wu et al., 2022a], CIT
[Xia et al., 2023], FLOOD [Liu et al., 2023], and Sta-
bleGL [Zhang et al., 2023]. We also compare with
empirical risk minimization (ERM) as a baseline.
Among these methods, REX [Krueger et al., 2020]
requires access to multiple training environments,
thus it is only applicable to the OGB-elliptic and
Facebook-100 datasets with multiple training graphs.
SR-GNN [Zhu et al., 2021] requires access to the input
distribution of the test set when training the model
and does not apply to the inductive setting studied
in this paper. All experiments are conducted on an
NVIDIA GeForce RTX 3090 GPU with 24GB memory.
We compareDeCaf with the baseline methods regard-
ing their restrictions and complexity in Appendix I.

Table 1: Test Macro-F1 scores on single-graph
datasets with soft label-leaveout. “OOM” stands for
out of memory. The best results are bold-faced.

Dataset Method SGC GCN GAT

Cora

ERM 65.61±4.28 67.94±0.89 66.95±2.81
IRM 65.52±3.01 66.04±2.33 65.46±4.08
EERM 65.27±2.22 67.24±2.86 69.50±2.66
CIT 60.51±1.48 61.30±0.72 67.80±2.28
FLOOD 63.58±4.86 62.26±5.54 66.35±5.43
StableGL 59.96±13.18 65.42±5.20 67.28±1.11
DeCaf 71.41±1.19 70.12±1.29 70.58±0.49

Citeseer

ERM 49.05±3.15 49.58±1.47 52.90±0.58
IRM 52.98±1.86 51.82±1.59 51.75±1.00
EERM 44.53±0.92 43.56±2.10 52.63±4.78
CIT 44.21±5.75 49.36±0.64 55.94±1.94
FLOOD 46.75±4.78 49.56±5.49 53.08±0.51
StableGL 51.35±7.34 49.62±3.29 51.50±1.12
DeCaf 59.77±1.15 58.85±0.51 56.71±1.96

Amazon

ERM 86.67±1.11 87.14±0.33 87.71±0.95
IRM 86.96±0.14 88.01±0.40 86.79±1.05
EERM 87.63±0.50 88.12±0.16 86.68±1.43
CIT 87.83±0.92 87.46±0.91 82.28±4.51
FLOOD 87.08±0.73 87.33±0.68 85.20±3.72
StableGL 87.26±0.73 87.48±0.45 85.26±2.82
DeCaf 89.67±0.39 88.93±0.73 88.74±0.57

Coauthor

ERM 86.60±0.91 87.66±0.24 80.48±1.21
IRM 87.96±0.52 88.75±0.58 78.87±1.20
EERM 84.68±1.28 85.27±1.04 OOM
CIT 84.48±0.40 86.17±1.52 85.60±0.84
FLOOD 83.63±1.13 85.27±1.04 OOM
StableGL 84.48±0.40 86.17±1.52 85.93±0.76
DeCaf 89.20±0.37 88.97±0.26 85.28±1.42

3.2 Performance on covariate shift (RQ1)

We use seven single-graph real-world datasets in which
Cora, Citeseer, Amazon-photo and Coauthor-CS are
homophilous graphs; Squirrel, Roman-empire and
Tolokers are heterophilous graphs. Further details
of the above datasets are provided in Appendix J.3.
As the above datasets have no clear domain infor-
mation, we synthetically create OOD data with soft
label-leaveout, which is inspired by label-leaveout used
in OOD detection [Wu et al., 2023]. For OOD gener-
alization, the model is not expected to predict unseen
classes, so instead of completely leaving out partial
classes to the test set, we allow the training set to have
a small portion of samples from those classes. In our
experiments, we make sure that the training, valida-

Xiaoxue Han, Huzefa Rangwala, Yue Ning

tion, and test sets have different class distributions. By
splitting the samples into groups with different class
distributions but a relatively constant input-label rela-
tionship, Soft Label-Leaveout simulates covariate shift
based on Definition 2.

Table 2: Test F1 scores on heterophilous graphs with
soft label-leaveout with H2GCN as backbone.

Squirrel Roman-empire Tolokers

ERM 24.12±3.52 42.01±0.98 46.94±3.07
IRM 28.81±2.06 40.58±0.60 47.86±2.26
EERM 30.42±3.71 OOM 44.18±0.18
CIT 28.93±1.80 45.41±3.25 44.26±0.00
FLOOD 23.96±8.73 OOM 44.58±0.18
StableGL 26.44±4.73 45.78±2.09 44.10±0.20
DeCaf 32.57±1.70 48.85±0.70 60.14±0.51

Table 3: Test F1 scores on Facebook-100 using GNN
with the best validation F1.

Training Johns Hopkins + Caltech + Amherst

Test Penn Brown Texas

ERM 49.23±1.72 49.68±0.93 48.57±0.21
IRM 35.26±2.40 46.92±5.66 36.86±1.64
REX 44.77±6.48 42.65±7.34 44.05±8.88
EERM 22.62±22.91 49.44±1.92 49.12±1.71
CIT 44.66±6.65 45.26±6.21 42.10±8.97
FLOOD 42.37±5.06 41.48±5.28 40.82±5.94
StableGL 44.54±6.58 45.64±6.25 43.75±5.65
CaNet 48.73±1.06 50.42±0.61 48.92±0.80
DeCaf 55.31±0.40 53.31±0.11 53.56±0.19

We compare DeCaf with the baselines on the four
homophilous graph datasets with soft label-leaveouts,
Cora, Citeseer, Amazon-photo, and Coauthor-CS,
with SGC, GCN, and GAT as GNN backbones. We
report the Macro-F1 score in Table 1. We observe
thatDeCaf outperforms ERM across all cases with an
average improvement of 4.2%, demonstrating its abil-
ity to mitigate the negative impact of covariate shifts.
Also, DeCaf beats the best baselines in most cases
with an average improvement of 2.4%, showing that it
better handles covariate shifts.

We compare DeCaf with the baselines on three het-
erophilous graph datasets with soft label-leaveouts,
Squirrel, Roman-empire, and Tolokers. Instead
of using common GNNs that are not suited for
heterophilous graphs [Platonov et al., 2024], we use
H2GCN [Zhu et al., 2020], a SOTA GNN well estab-
lished for graph heterophily problems, as the backbone
GNN for these datasets. We report the performance
of DeCaf compared to the baselines in Table 2. We
report Micro F1 score for Squirrel, Roman-empire

with multiple classes, and F1 score for Tolokers with
binary classes. On average, DeCaf improves the
(Macro-) F1 scores by 5.8%. We observe that DeCaf
outperforms the baselines among all datasets.

ER
M IRM REX

EE
RM CIT

FLO
OD

Sta
ble

GL
DeC

af
35

40

45

50

55

60

65

F1
 S

co
re

Figure 3: Distribution of F1 scores on OGB-elliptic

of different models shown in a bar plot. The dashed
line shows the mean F1 score of the ERM method.

3.3 Performance on concept shift (RQ2)

Facebook-100 [Traud et al., 2012] contains 100 social
networks collected from universities in the United
States. Following [Wu et al., 2022a], we adapt three
graphs for training, two graphs for validation, and
three graphs for testing. Three sets of training graphs
are used. OGB-elliptic [Rozemberczki et al., 2021] is
a dynamic financial network dataset that contains 43
graph snapshots from different time steps. We use the
first 5 graph snapshots for training, the next 5 for val-
idation, and the last 33 for testing. Further details of
the two datasets are provided in Appendix J.3.

We first identify distribution shifts within both
datasets. To assess concept shifts, we employ
Hotelling’s T-squared statistics to measure the dispar-
ity between node distributions sharing the same class
label. Our intuition is that if the nodes from the same
class in two graphs have significantly different distri-
butions, we can claim the graphs exhibit a concept
shift with different feature/structure-label mappings.
We present the pairwise T-squared scores comparing
node feature embeddings and neighborhood represen-
tations of nodes from the first class across subgraphs
for Facebook-100 (Figure 4 (a)) and OGB-elliptic

(Figure 4 (a)). A higher T-squared score indicates
a greater dissimilarity between the two distributions.
In Figure 4, we observe that the subgraphs within
Facebook-100 experience significantly less extent shift
in node features compared to neighborhood represen-
tations, suggesting a dominance of neighborhood shift
(def. concept shift-A). For OGB-elliptic, we initially
notice a gradual increase in the T-squared score across
the axis, indicating that the distribution shift intensi-
fies over time. Additionally, we observe that it experi-
ences concept shift-A and concept shift-X more evenly,
with the latter slightly more dominant.

For facebook-100, we report the F1-score of DeCaf
in comparison with the baselines on each of the test
graphs in Table 3. For each method, we use SGC,

DeCaf: A Framework for OOD Generalization

1 2 3 4 5 6 7

1
2

3
4

5
6

7
t_squared-feature

1 2 3 4 5 6 7

1
2

3
4

5
6

7

t_squared-neighbor

0

500

1000

1500

2000

2500

3000

3500

4000

JH CA AM CO YA PE BR TE

JH
CA

AM
CO

YA
PE

BR
TE

t_squared-feature

JH CA AM CO YA PE BR TE

JH
CA

AM
CO

YA
PE

BR
TE

t_squared-neighbor

0

500

1000

1500

2000

2500

3000

3500

4000

(a) OGB-elliptic (b) Facebook-100

Figure 4: Hotelling’s two-sample t-squared statistic of
node feature embedding between subgraphs from dif-
ferent time periods in OGB-elliptic dataset.

Table 4: Test Macro-F1 scores on synthetic datasets.
The best results are bold-faced.

h-feat qrt-feat full-feat

b
e
st

G
N
N

ERM 40.78±11.45 21.68±3.81 41.76±0.63
IRM 38.10±2.54 12.86±4.47 13.16±6.42
EERM 35.15±15.09 39.46±10.48 54.71±0.74
CIT 30.83±25.93 18.37±11.45 38.28±1.70
FLOOD 47.22±4.16 35.59±21.58 42.17±9.55
StableGL 32.83±12.24 28.56±20.37 45.12±0.77
DeCaf 57.24±13.75 49.00±2.61 54.11±1.14

H
2
G
C
N

ERM 49.38±3.44 31.72±1.60 66.59±1.86
IRM 51.17±8.82 33.57±4.78 62.04±1.45
EERM 49.04±3.54 30.04±1.72 65.67±1.62
CIT 54.33±3.90 30.28±3.96 64.78±2.64
FLOOD 47.18±4.97 29.56±1.13 64.65±0.79
StableGL 39.99±2.97 37.44±5.21 63.06±4.10
DeCaf 55.92±5.20 44.96±1.78 67.02±1.12

GCN, GAT, and H2GCN as baselines, and only report
the results of the best-performed GNN selected with
the validation set. We provide the results when using
the first set of training graphs. Complete results are
provided in Appendix K. We observe that DeCaf sig-
nificantly outperforms best baselines with an average
improvement of 3.8%, showing that DeCaf enhances
the generalizability of GNNs across different domains.

For OGB-elliptic, we plot the distribution of the F1
score averaged on all of the test graph snapshots with
SGC as the backbone in Figure 3. The rectangles rep-
resent the standard deviation, and the error bars illus-
trate the range of data samples. The dashed line shows
the mean F1 score of the ERM method. As shown,
DeCaf significantly outperforms all baselines with a
higher mean F1 score while demonstrating more sta-
ble performance, indicated by a smaller standard de-
viation, showing its ability to handle potentially more
complex temporal shifts.

We also note that unlike other datasets, where in most
cases the baseline graph OOD methods the baseline
graph OOD methods either slightly improve or achieve
comparable performance as ERM, on facebook-100

and OGB-elliptic, most of them degrade the perfor-
mance significantly. The reasons behind this could be
that the false assumptions made by those methods fail
to apply to the distribution shifts in real-life scenar-
ios and the over-confidence brought by their strategies
could further degrade the generalizability of the model.

3.4 The impact of confounder effect (RQ3)

We create three synthetic graphs, h-feat, qtr-feat,
and full-feat, to simulate scenarios with and with-
out confounder effects between node features and
neighborhood representations. h-feat is created such
that the node features and neighborhood representa-
tions are dependent and act as confounders to each
other. In contrast, full-feat and qtr-feat are de-
signed so that these elements are independent, with no
confounder effects. Details for creating these datasets
are provided in Appendix J.4.

We compare our model against baselines on the three
synthetic datasets. We report the results of the best-
performed one between SGC, GCN, GAT selected with
the validation set. We also incorporate H2GCN to ad-
dress potential heterophily in these datasets. Besides,
H2GCN separately models node features and neigh-
borhood representations, making its performance on
ERM a useful benchmark for our decoupling frame-
work. We present the average Macro-F1 scores in Ta-
ble 4. We report the results for the best-performed
one among SGC, GCN, and GAT due to page limita-
tion, please refer to Table 12 in Appendix for the full
results. For qtr-feat and full-feat, where node
features and neighborhood representations are inde-
pendent, employing H2GCN on ERM significantly im-
proves the Macro-F1 score compared to other GNN
models. However, in h-feat, where node features and
neighborhood representations are correlated, the gains
are modest and are outperformed by our model with
any GNN backbone. This suggests that while the sep-
arate modeling approach of H2GCN can mitigate dis-
tribution shifts, it falls short in addressing confounder
effects, thus underperforming when node features and
neighborhood representations are correlated.

4 Conclusion

In this paper, we introduce a causal decoupling frame-
work to improve out-of-distribution generalization on
node classification. We develop a comprehensive the-
oretical foundation to show that, by independently es-
timating the treatment effects of node features and
neighborhood representations, the casual decoupling
framework is robust when dealing with different types
of distribution shifts. Following this theoretical basis,
we also propose an implementable end-to-end frame-
work, DeCaf , that leverages casual inference tech-
nologies to estimate the decoupled representations and
make final predictions. We demonstrate the effective-
ness and the power of DeCaf for node classification on
both real-world datasets and synthetic datasets under
different types of distribution shifts.

Xiaoxue Han, Huzefa Rangwala, Yue Ning

References

[Abadie and Imbens, 2006] Abadie, A. and Imbens,
G. W. (2006). Large sample properties of matching
estimators for average treatment effects. Economet-
rica, 74(1):235–267.

[Ahuja et al., 2020] Ahuja, K., Shanmugam, K.,
Varshney, K. R., and Dhurandhar, A. (2020).
Invariant risk minimization games. CoRR,
abs/2002.04692.

[Ai et al., 2025] Ai, G., Pang, G., Qiao, H., Gao, Y.,
and Yan, H. (2025). Grokformer: Graph fourier
kolmogorov-arnold transformers.

[Arjovsky et al., 2020] Arjovsky, M., Bottou, L., Gul-
rajani, I., and Lopez-Paz, D. (2020). Invariant risk
minimization.

[Athey and Wager, 2019] Athey, S. and Wager, S.
(2019). Estimating treatment effects with causal
forests: An application. Observational Studies, 5.

[Austin, 2011] Austin, P. C. (2011). An introduction
to propensity score methods for reducing the ef-
fects of confounding in observational studies. Multi-
variate Behavioral Research, 46(3):399–424. PMID:
21818162.

[Bai et al., 2021] Bai, H., Sun, R., Hong, L., Zhou,
F., Ye, N., Ye, H.-J., Chan, S.-H. G., and Li, Z.
(2021). Decaug: Out-of-distribution generalization
via decomposed feature representation and semantic
augmentation. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(8):6705–6713.

[Bica et al., 2020] Bica, I., Jordon, J., and van der
Schaar, M. (2020). Estimating the effects of
continuous-valued interventions using generative
adversarial networks. CoRR, abs/2002.12326.

[Buffelli et al., 2022] Buffelli, D., Lio, P., and Vandin,
F. (2022). Sizeshiftreg: a regularization method for
improving size-generalization in graph neural net-
works. In Proceedings of the 36th International Con-
ference on Neural Information Processing Systems.

[Chang and Dy, 2017] Chang, Y. and Dy, J. (2017).
Informative subspace learning for counterfactual in-
ference. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 31(1).

[Chen et al., 2022] Chen, Y., Zhang, Y., Bian, Y.,
Yang, H., KAILI, M., Xie, B., Liu, T., Han, B., and
Cheng, J. (2022). Learning causally invariant repre-
sentations for out-of-distribution generalization on
graphs. In Advances in Neural Information Pro-
cessing Systems.

[Chernozhukov et al., 2017] Chernozhukov, V.,
Chetverikov, D., Demirer, M., Duflo, E., Hansen,
C., Newey, W., and Robins, J. (2017). Dou-
ble/debiased machine learning for treatment and
causal parameters.

[Fan et al., 2024] Fan, S., Wang, X., Shi, C., Cui,
P., and Wang, B. (2024). Generalizing graph neu-
ral networks on out-of-distribution graphs. IEEE
Transactions on pattern analysis and machine in-
telligence, 46.

[Fan et al., 2022] Fan, S., Wang, X., Shi, C., Kuang,
K., Liu, N., and Wang, B. (2022). Debiased graph
neural networks with agnostic label selection bias.
CoRR, abs/2201.07708.

[Funk et al., 2011] Funk, M. J., Westreich, D.,
Wiesen, C., Stürmer, T., Brookhart, M. A., and
Davidian, M. (2011). Doubly Robust Estimation of
Causal Effects. American Journal of Epidemiology,
173(7):761–767.

[Giles et al., 1998] Giles, C. L., Bollacker, K. D., and
Lawrence, S. (1998). Citeseer: an automatic citation
indexing system. In Proceedings of the Third ACM
Conference on Digital Libraries, DL ’98, page 89–98,
New York, NY, USA. Association for Computing
Machinery.

[Gui et al., 2022] Gui, S., Li, X., Wang, L., and Ji, S.
(2022). Good: A graph out-of-distribution bench-
mark.

[Harada and Kashima, 2020] Harada, S. and
Kashima, H. (2020). Graphite: Estimating in-
dividual effects of graph-structured treatments.
CoRR, abs/2009.14061.

[Heckman et al., 2018] Heckman, J. J., Humphries,
J. E., and Veramendi, G. (2018). Returns to edu-
cation: The causal effects of education on earnings,
health, and smoking. Journal of Political Economy,
126(S1):S197–S246.

[Hill, 2011] Hill, J. L. (2011). Bayesian nonparametric
modeling for causal inference. Journal of Computa-
tional and Graphical Statistics, 20(1):217–240.

[Johansson et al., 2016] Johansson, F., Shalit, U., and
Sontag, D. (2016). Learning representations for
counterfactual inference. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 3020–3029, New York, New York,
USA. PMLR.

DeCaf: A Framework for OOD Generalization

[Kaddour et al., 2021] Kaddour, J., Zhu, Y., Liu, Q.,
Kusner, M. J., and Silva, R. (2021). Causal ef-
fect inference for structured treatments. In Ran-
zato, M., Beygelzimer, A., Dauphin, Y., Liang, P.,
and Vaughan, J. W., editors, Advances in Neural
Information Processing Systems, volume 34, pages
24841–24854. Curran Associates, Inc.

[Kallus, 2020] Kallus, N. (2020). DeepMatch: Balanc-
ing deep covariate representations for causal infer-
ence using adversarial training. In III, H. D. and
Singh, A., editors, Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages
5067–5077. PMLR.

[Kipf and Welling, 2016] Kipf, T. N. and Welling, M.
(2016). Semi-supervised classification with graph
convolutional networks. CoRR, abs/1609.02907.

[Krueger et al., 2020] Krueger, D., Caballero, E., Ja-
cobsen, J., Zhang, A., Binas, J., Priol, R. L., and
Courville, A. C. (2020). Out-of-distribution gen-
eralization via risk extrapolation (rex). CoRR,
abs/2003.00688.

[Kuang et al., 2018] Kuang, K., Xiong, R., Cui, P.,
Athey, S., and Li, B. (2018). Stable prediction across
unknown environments. CoRR, abs/1806.06270.

[Künzel et al., 2019] Künzel, S. R., Sekhon, J. S.,
Bickel, P. J., and Yu, B. (2019). Metalearners for es-
timating heterogeneous treatment effects using ma-
chine learning. Proceedings of the National Academy
of Sciences, 116(10):4156–4165.

[Li et al., 2024] Li, H., Fu, J., Ling, X., Sun, Z., Wang,
K., and Chen, Z. (2024). Single-cell curriculum
learning-based deep graph embedding clustering.

[Li et al., 2022a] Li, H., Wang, X., Zhang, Z., and
Zhu, W. (2022a). Out-of-distribution generalization
on graphs: A survey.

[Li et al., 2023] Li, H., Wang, X., Zhang, Z., and Zhu,
W. (2023). Ood-gnn: Out-of-distribution general-
ized graph neural network. IEEE Transactions on
Knowledge and Data Engineering, 35(7):7328–7340.

[Li et al., 2022b] Li, H., Zhang, Z., Wang, X., and
Zhu, W. (2022b). Learning invariant graph rep-
resentations for out-of-distribution generalization.
In Advances in Neural Information Processing Sys-
tems, volume 35, pages 11828–11841. Curran Asso-
ciates, Inc.

[Liu et al., 2023] Liu, Y., Ao, X., Feng, F., Ma, Y.,
Li, K., Chua, T.-S., and He, Q. (2023). Flood:

A flexible invariant learning framework for out-of-
distribution generalization on graphs. KDD ’23,
page 1548–1558, New York, NY, USA. Association
for Computing Machinery.

[Liu et al., 2020] Liu, Y., Wang, X., Wu, S., and Xiao,
Z. (2020). Independence promoted graph disentan-
gled networks. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(04):4916–4923.

[Ma et al., 2019] Ma, J., Cui, P., Kuang, K., Wang,
X., and Zhu, W. (2019). Disentangled graph convo-
lutional networks. In Chaudhuri, K. and Salakhut-
dinov, R., editors, Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages
4212–4221. PMLR.

[McAuley et al., 2015] McAuley, J., Targett, C., Shi,
Q., and van den Hengel, A. (2015). Image-based
recommendations on styles and substitutes.

[McCallum et al., 2000] McCallum, A., Nigam, K.,
Rennie, J. D. M., and Seymore, K. (2000). Au-
tomating the construction of internet portals with
machine learning. Information Retrieval, 3(2):127–
163.

[Muandet et al., 2013] Muandet, K., Balduzzi, D.,
and Schölkopf, B. (2013). Domain generalization
via invariant feature representation.

[Platonov et al., 2024] Platonov, O., Kuznedelev, D.,
Diskin, M., Babenko, A., and Prokhorenkova, L.
(2024). A critical look at the evaluation of gnns
under heterophily: Are we really making progress?

[Prosperi et al., 2020] Prosperi, M. C. F., Guo, Y.,
Sperrin, M., Koopman, J. S., Min, J., He, X., Rich,
S. N., Wang, M., Buchan, I. E., and Bian, J. (2020).
Causal inference and counterfactual prediction in
machine learning for actionable healthcare. Nature
Machine Intelligence, 2:369 – 375.

[Qiao and Pang, 2024] Qiao, H. and Pang, G. (2024).
Truncated affinity maximization: One-class ho-
mophily modeling for graph anomaly detection.

[Qiao et al., 2024] Qiao, H., Wen, Q., Li, X., Lim, E.-
P., and Pang, G. (2024). Generative semi-supervised
graph anomaly detection.

[Ran et al., 2024] Ran, X., Ye, Q., Hu, H., Huang,
X., Xu, J., and Fu, J. (2024). Differentially pri-
vate graph neural networks for link prediction. In
ICDE, pages 1632–1644.

[Robinson, 1988] Robinson, P. M. (1988). Root-n-
consistent semiparametric regression. Economet-
rica, 56(4):931–954.

Xiaoxue Han, Huzefa Rangwala, Yue Ning

[Rozemberczki et al., 2021] Rozemberczki, B., Allen,
C., and Sarkar, R. (2021). Multi-Scale attributed
node embedding. Journal of Complex Networks,
9(2):cnab014.

[Rubin, 1973] Rubin, D. B. (1973). Matching to re-
move bias in observational studies. Biometrics,
29(1):159–183.

[Rubin, 1978] Rubin, D. B. (1978). Using multivari-
ate matched sampling and regression adjustment to
control bias in observational studies. ETS Research
Bulletin Series, 1978(2):i–33.

[Sagawa et al., 2019] Sagawa, S., Koh, P. W.,
Hashimoto, T. B., and Liang, P. (2019). Distri-
butionally robust neural networks for group shifts:
On the importance of regularization for worst-case
generalization. CoRR, abs/1911.08731.

[Shalit et al., 2017] Shalit, U., Johansson, F. D., and
Sontag, D. (2017). Estimating individual treatment
effect: generalization bounds and algorithms.

[Shchur et al., 2019] Shchur, O., Mumme, M., Bo-
jchevski, A., and Günnemann, S. (2019). Pitfalls
of graph neural network evaluation.

[Shen et al., 2021] Shen, Z., Liu, J., He, Y., Zhang,
X., Xu, R., Yu, H., and Cui, P. (2021). Towards
out-of-distribution generalization: A survey. CoRR,
abs/2108.13624.

[Shi et al., 2019] Shi, C., Blei, D. M., and Veitch, V.
(2019). Adapting neural networks for the estimation
of treatment effects.

[Sui et al., 2021] Sui, Y., Wang, X., Wu, J., He, X.,
and Chua, T. (2021). Deconfounded training for
graph neural networks. CoRR, abs/2112.15089.

[Traud et al., 2012] Traud, A. L., Mucha, P. J., and
Porter, M. A. (2012). Social structure of facebook
networks. Physica A: Statistical Mechanics and its
Applications, 391(16):4165–4180.

[Veličković et al., 2018] Veličković, P., Cucurull, G.,
Casanova, A., Romero, A., Liò, P., and Bengio, Y.
(2018). Graph attention networks. In International
Conference on Learning Representations.

[Wager and Athey, 2018] Wager, S. and Athey, S.
(2018). Estimation and inference of hetero-
geneous treatment effects using random forests.
Journal of the American Statistical Association,
113(523):1228–1242.

[Wu et al., 2019] Wu, F., Souza, A., Zhang, T., Fifty,
C., Yu, T., and Weinberger, K. (2019). Simplifying
graph convolutional networks. In Proceedings of the

36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 6861–6871. PMLR.

[Wu et al., 2023] Wu, Q., Chen, Y., Yang, C., and
Yan, J. (2023). Energy-based out-of-distribution de-
tection for graph neural networks. In The Eleventh
International Conference on Learning Representa-
tions.

[Wu et al., 2022a] Wu, Q., Zhang, H., Yan, J., and
Wipf, D. (2022a). Handling distribution shifts on
graphs: An invariance perspective. In International
Conference on Learning Representations.

[Wu et al., 2022b] Wu, Y., Wang, X., Zhang, A., He,
X., and Chua, T. (2022b). Discovering invari-
ant rationales for graph neural networks. CoRR,
abs/2201.12872.

[Wu et al., 2022c] Wu, Y.-X., Wang, X., Zhang, A.,
Hu, X., Feng, F., He, X., and Chua, T.-S. (2022c).
Deconfounding to explanation evaluation in graph
neural networks.

[Wu et al., 2021] Wu, Z., Pan, S., Chen, F., Long, G.,
Zhang, C., and Yu, P. S. (2021). A comprehen-
sive survey on graph neural networks. IEEE Trans-
actions on Neural Networks and Learning Systems,
32(1):4–24.

[Xia et al., 2023] Xia, D., Wang, X., Liu, N., and Shi,
C. (2023). Learning invariant representations of
graph neural networks via cluster generalization. In
Thirty-seventh Conference on Neural Information
Processing Systems.

[Yao et al., 2018] Yao, L., Li, S., Li, Y., Huai, M.,
Gao, J., and Zhang, A. (2018). Representation
learning for treatment effect estimation from obser-
vational data. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates,
Inc.

[Ye et al., 2021] Ye, H., Xie, C., Cai, T., Li, R., Li, Z.,
and Wang, L. (2021). Towards a theoretical frame-
work of out-of-distribution generalization.

[Zhang et al., 2023] Zhang, S., Tong, Y., Kuang, K.,
Feng, F., Qiu, J., Yu, J., Zhao, Z., Yang, H., Zhang,
Z., and Wu, F. (2023). Stable prediction on graphs
with agnostic distribution shifts. In Proceedings of
The KDD’23 Workshop on Causal Discovery, Pre-
diction and Decision, volume 218 of Proceedings of
Machine Learning Research, pages 49–74. PMLR.

[Zhu et al., 2020] Zhu, J., Yan, Y., Zhao, L.,
Heimann, M., Akoglu, L., and Koutra, D. (2020).
Generalizing graph neural networks beyond ho-
mophily. CoRR, abs/2006.11468.

DeCaf: A Framework for OOD Generalization

[Zhu et al., 2021] Zhu, Q., Ponomareva, N., Han, J.,
and Perozzi, B. (2021). Shift-robust GNNs: Over-
coming the limitations of localized graph training
data. Advances in Neural Information Processing
Systems, 34.

Checklist

The checklist follows the references. For each ques-
tion, choose your answer from the three possible op-
tions: Yes, No, Not Applicable. You are encouraged
to include a justification to your answer, either by ref-
erencing the appropriate section of your paper or pro-
viding a brief inline description (1-2 sentences). Please
do not modify the questions. Note that the Checklist
section does not count towards the page limit. Not
including the checklist in the first submission won’t
result in desk rejection, although in such case we will
ask you to upload it during the author response period
and include it in camera ready (if accepted).

In your paper, please delete this instructions
block and only keep the Checklist section head-
ing above along with the questions/answers be-
low.

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] We provide a clear description of the
mathematical setting, assumptions, and the
detailed methodology for the Casual Decou-
pling Framework we propose in section 2. We
also provide the pseudocode for the main al-
gorithm in Appendix B.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes] We conduct complexity analysis in Ap-
pendix I.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries.
[No] We will open-source our source code
upon publication.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results.
[Yes] We provide the full set of assumptions
for deriving the theoretic framework, includ-
ing Assumption 1, Assumption 2, and com-
plete assumptions for CATE estimation as
detailed in Appendix F.

(b) Complete proofs of all theoretical results.
[Yes] We provide complete proof of all theo-
retical results in section 2 of the main paper
and in Appendix E and G.

(c) Clear explanations of any assumptions.
[Yes] We provide clear explanations for every
assumption we make.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL).
[No] We will open-source our source code
upon publication.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen).
[Yes] We provide all necessary training de-
tails to reproduce the reported results in Ap-
pendix J.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times).
[Yes] We provide standard deviations for all
results over multiple runs. We indicate that
in the experiment section of the paper.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider).
[Yes] We provide details of computations re-
sources in Section 3.1 and Appendix J.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets.
[Yes] We have properly cited all the assets
including code, data, and models.

(b) The license information of the assets, if ap-
plicable. [NA]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [NA]

(d) Information about consent from data
providers/curators. [NA]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [NA]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [NA]

Xiaoxue Han, Huzefa Rangwala, Yue Ning

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [NA]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [NA]

DeCaf: A Framework for OOD Generalization

DeCaf: A Causal Decoupling Framework for OOD Generalization
on Node Classification:

Supplementary Materials

A Related work

A.1 OOD Generalization on Graphs

Abundant pioneer works [Muandet et al., 2013, Ahuja et al., 2020, Bai et al., 2021, Krueger et al., 2020,
Sagawa et al., 2019, Shen et al., 2021, Ye et al., 2021] have been dedicated to addressing the out-of-distribution
(OOD) generalization problem. The primary objective of OOD generalization is to train models within a
specific domain and anticipate their robust generalization to test domains from potentially distinct distri-
butions [Ye et al., 2021]. While most of these methods are tailored to deal with distribution shifts on tab-
ular data or images, their performance is restricted when confronted with more complex data structures.
With the success of Graph Neural Networks (GNNs) [Veličković et al., 2018, Kipf and Welling, 2016], more re-
cent research starts to address the OOD problem on graphs [Li et al., 2023, Fan et al., 2024, Sui et al., 2021,
Wu et al., 2022c, Chen et al., 2022, Li et al., 2022b, Wu et al., 2022b, Buffelli et al., 2022, Fan et al., 2022,
Wu et al., 2022a, Liu et al., 2023, Xia et al., 2023, Zhang et al., 2023, Zhu et al., 2021]. OOD generalization
on graphs is more intractable due to the non-euclidean nature of graph data structures [Qiao et al., 2024,
Ai et al., 2025, Li et al., 2024, Qiao and Pang, 2024, Ran et al., 2024], and the subtlety of different types of
distribution shifts [Li et al., 2022a].

One consensus of OOD generalization is that, when domain knowledge is unavailable, knowledge transfer to
a new domain is impossible without structural assumption on data generation processes [Wu et al., 2022a].
A general assumption made by most OOD generalization methods is that there exist “true” correlations be-
tween input data features and their labels. These correlations remain invariant across different domains,
and they aim to identify these true connections while removing the spurious ones [Li et al., 2022a]. Most
of the existing graph OOD generalization methods leverage this assumption in different manners or ex-
tend it to more specific forms. Approaches [Li et al., 2023, Fan et al., 2024, Fan et al., 2022] backed by
confounder balancing [Kuang et al., 2018] from casual theories remove the correlations between casual and
non-causal (spurious) aspects (in the forms of representations [Li et al., 2023], subgraphs [Fan et al., 2024],
or samples [Fan et al., 2022], etc.) such that the model can focus on the casual ones. Some meth-
ods [Li et al., 2022b, Wu et al., 2022b, Wu et al., 2022a, Liu et al., 2023, Xia et al., 2023, Zhang et al., 2023]
leverage invariance principle [Arjovsky et al., 2020] from causality and assumes that there exists a portion of
information in the input (e.g., subgraphs) that is invariant to label predictions across different environments.
This approach often requires access to multiple environments/domains during the training process, which are
not always available. Structural causal graphs (SCGs) have also been used for assumptions in data genera-
tion processes [Sui et al., 2021, Wu et al., 2022c, Chen et al., 2022]. They focus on making unbiased estimations
of causal relationships via do-calculus [Sui et al., 2021] or back-door adjustments [Wu et al., 2022c]. Zhu et
al. [Zhu et al., 2021] assume that training data are from a biased data generation process while test data are
unbiased. Buffelli et al. [Buffelli et al., 2022] improves model generalization on smaller or larger test graphs by
minimizing the discrepancy between the learned representation on the original graph and the coarsened graph.

Among the above-mentioned methods, most of them [Li et al., 2023, Fan et al., 2024, Sui et al., 2021,
Wu et al., 2022c, Chen et al., 2022, Li et al., 2022b, Wu et al., 2022b, Buffelli et al., 2022] are tailored for graph-
level or link-level tasks, and it is non-trivial to adapt them to node-level tasks. For the rest of the meth-
ods [Fan et al., 2022, Wu et al., 2022a, Liu et al., 2023, Xia et al., 2023, Zhang et al., 2023, Zhu et al., 2021]
that can be applied on node-level tasks, an ego-net is often the starting point for any further actions to be taken (to

Xiaoxue Han, Huzefa Rangwala, Yue Ning

generate an invariant subgraph, or to learn the invariant representation of it, etc). Current approaches involve ag-
gregating a central node and its neighborhood into a unified representation (e.g., GCNs [Kipf and Welling, 2016]
or GATs [Veličković et al., 2018]), but they tend to overlook and filter out potential complex dependencies (or
independencies) between them. Certain GNNs such as H2GCN [Zhu et al., 2020] can model the central node
and its neighbors’ representations separately through the concatenation operation during the aggregation, but
inferences on their relations are still missing. Disentangled graph learning [Ma et al., 2019, Liu et al., 2020] in-
vestigates latent factors that may cause the formation of an edge between a node and its neighbors. This method
can also improve the OOD generalizability of GNNs, but it focuses on explaining the existence of edges with
node representations, which is fundamentally different from our focus.

A.2 Causal Effect Estimation

Estimating the causal effect of treatment plays a crucial role in many domains [Heckman et al., 2018,
Prosperi et al., 2020]. With the presence of the confounder, two types of studies, dubbed randomized con-
trolled trials (RCTs) and observational studies, are often conducted to achieve an unbiased estimation of casual
effects [Yao et al., 2018]. Often, RCTs are expensive, unethical, or infeasible [Yao et al., 2018], leaving observa-
tional studies the only option. The challenges of observational studies are that the counterfactual samples are
missing from observational data, and the estimation of counterfactual output is often biased due to the treat-
ment selection bias caused by the confounder effect [Chernozhukov et al., 2017]. Traditional solutions include
matching methods [Abadie and Imbens, 2006, Austin, 2011, Rubin, 1978, Chang and Dy, 2017, Rubin, 1973],
tree-based methods [Hill, 2011, Wager and Athey, 2018], and regression-based methods [Künzel et al., 2019,
Funk et al., 2011]. Recently, representation learning methods [Shalit et al., 2017, Yao et al., 2018,
Johansson et al., 2016, Shi et al., 2019, Athey and Wager, 2019, Bica et al., 2020, Kallus, 2020] have also been
widely studied and demonstrate impressive performance. The above-mentioned studies focus on binary or
categorical treatments, which are difficult to apply when the treatments are real-valued and structured.
GraphITE [Harada and Kashima, 2020] is proposed to deal with graph-structured treatment, which mitigates
observation biases by reinforcing the independence between the treatment and covariate representations in the
notion of Hilbert-Schmidt Independence Criterion (HSIC). Robinson decomposition [Kaddour et al., 2021] is
used to identify the distinct contribution of the treatment and the covariates and generalizes it such that the
treatment can be vectorized to a continuous embedding.

B Pseudo code

We provide the pseudo-code for DeCaf in Algorithm 1.

C Important mathematical notations

We provide a summary of important mathematical notations in Table 5.

D Discussion on spillover effect

Assumption 4. The Law of Large Numbers is invoked, ensuring that the sample size is sufficiently large such
that the observed distribution of the random variable z remains stable and converges towards its theoretical
distribution.

Observation 1. Given {zj}nj=1 are sampled from a specific distribution. Under assumption 1, the expectation
of the neighborhood representation ai of node i is dependent on zi and the distribution of z. Under assumption
4, the change of other individual nodes has a negligible spillover effect on the expectation of ai.

E Analysis on distribution shifts

Proposition 1. Under covariate shift, the correlation between x and a shifts (e.g. P train(a|x) ̸= P test(a|x)
or P train(x|a) ̸= P test(x|a)). Consequently, the conditional distribution of y given both x and a shifts (e.g.
P train(y|x,a) ̸= P test(y|x,a)). However, the conditional distribution of y given x alone remain invariant (e.g.
P train(y|x) = P test(y|x)).

DeCaf: A Framework for OOD Generalization

Algorithm 1 The Proposed Method DeCaf

1: Input: node features X ∈ Rn×d, unnormalized adjacency matrix A ∈ {0, 1}n×n
2: Output: predicted class labels Y ∈ In×k
3: while not converged do
4: Evaluate Jp,p′(ρ, ρ

′) based on Equation 20

5: Update ρ← ρ− ∆̂ρJp,p′(ρ, ρ
′)

6: Update ρ′ ← ρ′ − ∆̂ρ′Jp,p′(ρ, ρ
′)

7: end while
8: Evaluate ha

i and ma
i

9: while not converged do
10: Sample mini-batch {xi,ha

i }bi=1

11: Evaluate Jg(ψ
A)

12: Update θA ← θA − ∆̂θAJm(θA)
13: end while
14: while not converged do
15: Sample mini-batch {xi,ha

i }bi=1

16: Evaluate Jm(θA), Je(η
X)

17: for step = 1 to step size do
18: Update θA ← θA − ∆̂θAJm(θA)
19: end for
20: Update ηA ← ηA − ∆̂ηAJe(η

X)
21: end while
22: while not converged do
23: Sample mini-batch {xi,ha

i ,m
a
i }bi=1

24: Evaluate Jh(ϕ
X), Je(η

X)
25: for step = 1 to step size do
26: Update ϕX ← ϕX − ∆̂ϕXJm(ϕX)
27: end for
28: Update ηX ← ηX − ∆̂ηXJe(η

X)
29: end while
30: Evaluate E[y|C = a, do(T = x′)], E[y|C = x, do(T = a′)] based on Equations in Section 2.4.2
31: Evaluate Ψa(a), Ψx(x) based on Equation 7 and 8
32: Evaluate y based on Equation 14

Xiaoxue Han, Huzefa Rangwala, Yue Ning

Table 5: Important notations and descriptions.

Notation Description

n, d, k, o # nodes, feature size, # classes, hidden size
x, xi, X ∈ Rn×d node feature vector, node feature of i-th instance, node feature matrix
y, yi, Y ∈ In×k node label vector, label of i-th instance, node label matrix
a, ai, A ∈ Rn×o neighborhood representation, neighborhood representation, of i-th instance,

neighborhood representation matrix
A ∈ In×n unnormalized adjacency matrix
p(·), p′(·) GNN embedding layer, MLP layer
ρ, ρ′ parameters of p(·), p′(·)
ha
i , m

a
i hidden neighborhood representation of node i, and its project to output space

gX(·), gA(·) confounder representation function for SCM-F and SCM-A
ψX , ψA parameters for gX(·), gA(·)
hX(·), hA(·) treatment representation function for SCM-F and SCM-A
ϕX , ϕA parameters for hX(·), hA(·)
mX(·),mA(·) confounder predicting function for SCM-F and SCM-A
θX , θA parameters for mX(·),mA(·)
eX(·), eA(·) propensity feature function for SCM-F and SCM-A
ηX , ηA parameters for eX(·), eA(·)
x′, a′ counterfactual node feature and neighborhood representation

Proof. Under covariate shift, we have:
P train(z) ̸= P test(z)

while the transformation matrices and bias vectors for generating x, y, and a remain the same between training
and testing datasets:

Mtrain
x =Mtest

x , btrain
x = btest

x

Mtrain
y =Mtest

y , btrain
y = btest

y

Mtrain
s =Mtest

s , Mtrain
o =Mtest

o

The generation processes are:
xi =Mxzi + bx

yi =Myzi + by

p(Aij = 1) = c
(
∥Mszi −Mozj∥22 + 1

)−1

where ai is defined as:
ai = agg({Mazj}) where j ∈ N 1

i ∪N 2
i ∪ . . . ∪N l

i

Given that P (z) changes, the marginal distribution of x changes accordingly:

P train(x) ̸= P test(x)

Since ai is an aggregation of transformed neighbors’ latent vectors zj , and P (z) changes, the distribution of ai
also changes:

P train(a) ̸= P test(a)

To show that the joint distribution P (x,a) changes, consider that a is derived from z through a different
transformationMa and aggregation function. Since x and a are both functions of z, any change in the distribution
of z will induce changes in both P (x) and P (a). Given that P (x) and P (a) change independently due to the
change in P (z), the joint distribution P (x,a) must also change because the dependencies between x and a are
functions of z:

P train(x,a) ̸= P test(x,a)

DeCaf: A Framework for OOD Generalization

This implies that:

P train(a|x) = P train(x,a)

P train(x)
̸= P test(x,a)

P test(x)
= P test(a|x)

P train(x|a) = P train(x,a)

P train(a)
̸= P test(x,a)

P test(a)
= P test(x|a)

The generation process for y is:
yi =Myzi + by

SinceMy and by are the same across training and testing, and zi influences xi and ai throughMx,Ms,Mo,
andMa, the change in P (z) affects P (x) and P (a). Consequently, the joint distribution P (y,x,a) changes:

P train(y,x,a) ̸= P test(y,x,a)

Thus, the conditional distribution:

P train(y|x,a) = P train(y,x,a)

P train(x,a)
̸= P test(y,x,a)

P test(x,a)
= P test(y|x,a)

Since yi =Myzi + by andMy and by are invariant, the conditional distribution P (y|z) remains invariant:

P train(y|z) = P test(y|z)

Given that xi = Mxzi + bx and Mx and bx are invariant, the conditional distribution P (y|x) also remains
invariant:

P train(y|x) = P test(y|x)

Proposition 2. Under concept shift-F, the dependencies between x and a shifts (e.g. P train(a|x) ̸= P test(a|x)
or P train(x|a) ̸= P test(x|a)), and the conditional distribution of Y given F shifts (e.g. P train(y|x) ̸= P test(y|x)).
Consequently, the conditional distribution of y given both x and a shifts (e.g. P train(y|x,a) ̸= P test(y|x,a)).
However, the conditional distribution of Y given A alone remain invariant (e.g. P train(y|a) = P test(y|a)).

Proof. Under concept shift-F, we have:
P train(z) = P test(z)

while the transformation matrices and bias vectors for generating x change, but those for a and y remain the
same between training and testing datasets:

Mtrain
x ̸=Mtest

x , btrain
x ̸= btest

x

Mtrain
y =Mtest

y , btrain
y = btest

y

Mtrain
s =Mtest

s , Mtrain
o =Mtest

o

The generation processes are:
xtrain
i =Mtrain

x zi + btrain
x

xtest
i =Mtest

x zi + btest
x

yi =Myzi + by

p(Aij = 1) = c
(
∥Mszi −Mozj∥22 + 1

)−1

where ai is defined as:
ai = agg({Mazj}) where j ∈ N 1

i ∪N 2
i ∪ . . . ∪N l

i

Xiaoxue Han, Huzefa Rangwala, Yue Ning

Given that P (z) remains the same, the marginal distribution of a does not change:

P train(a) = P test(a)

However, the change in the transformation matrixMx and bias vector bx implies that the marginal distribution
of x changes:

P train(x) ̸= P test(x)

Since a is an aggregation of transformed neighbors’ latent vectors zj , and the generation process for a remains
unchanged, the joint distribution P (x,a) changes due to the change in P (x):

P train(x,a) ̸= P test(x,a)

This implies that:

P train(a|x) = P train(x,a)

P train(x)
̸= P test(x,a)

P test(x)
= P test(a|x)

P train(x|a) = P train(x,a)

P train(a)
̸= P test(x,a)

P test(a)
= P test(x|a)

The generation process for y is:
yi =Myzi + by

SinceMy and by are the same across training and testing, and zi influences xi throughMx, the change inMx

affects the joint distribution P (y,x):
P train(y,x) ̸= P test(y,x)

Thus, the conditional distribution:

P train(y|x) = P train(y,x)

P train(x)
̸= P test(y,x)

P test(x)
= P test(y|x)

The change in the joint distribution P (x,a) implies a change in the joint distribution P (y,x,a) since y depends
on both x and a:

P train(y,x,a) ̸= P test(y,x,a)

Thus, the conditional distribution:

P train(y|x,a) = P train(y,x,a)

P train(x,a)
̸= P test(y,x,a)

P test(x,a)
= P test(y|x,a)

Since y and a are both derived from z through invariant transformation matrices and bias vectors, and P (z)
remains the same, the joint distribution P (y,a) remains unchanged:

P train(y,a) = P test(y,a)

Thus, the conditional distribution:

P train(y|a) = P train(y,a)

P train(a)
=
P test(y,a)

P test(a)
= P test(y|a)

Proposition 3. Under concept shift-A, the dependencies between x and a shifts (e.g. P train(a|x) ̸= P test(a|x)
or P train(x|a) ̸= P test(x|a)), and the conditional distribution of y given A shifts (e.g. P train(y|a) ̸= P test(y|a)).
Consequently, the conditional distribution of Y given both x and a shifts (e.g. P train(y|x,a) ̸= P test(y|x,a)).
However, the conditional distribution of y given x alone remain invariant (e.g. P train(y|x) = P test(y|x)).

DeCaf: A Framework for OOD Generalization

Proof. Under concept shift-A, we have:
P train(z) = P test(z)

while the transformation matrices and bias vectors for generating a change, but those for x and y remain the
same between training and testing datasets:

Mtrain
x =Mtest

x , btrain
x = btest

x

Mtrain
y =Mtest

y , btrain
y = btest

y

Mtrain
s ̸=Mtest

s , Mtrain
o ̸=Mtest

o

The generation processes are:
xi =Mxzi + bx

yi =Myzi + by

ptrain(Aij = 1) = c
(
∥Mtrain

s zi −Mtrain
o zj∥22 + 1

)−1

ptest(Aij = 1) = c
(
∥Mtest

s zi −Mtest
o zj∥22 + 1

)−1

where ai is defined as:
ai = agg({Mazj}) where j ∈ N 1

i ∪N 2
i ∪ . . . ∪N l

i

Given that P (z) remains the same, the marginal distribution of x does not change:

P train(x) = P test(x)

However, the change in the transformation matrices Ms and Mo implies that the marginal distribution of a
changes:

P train(a) ̸= P test(a)

Since a is an aggregation of transformed neighbors’ latent vectors zj , and the generation process for a changes,
the joint distribution P (x,a) changes due to the change in P (a):

P train(x,a) ̸= P test(x,a)

This implies that:

P train(a|x) = P train(x,a)

P train(x)
̸= P test(x,a)

P test(x)
= P test(a|x)

P train(x|a) = P train(x,a)

P train(a)
̸= P test(x,a)

P test(a)
= P test(x|a)

The generation process for y is:
yi =Myzi + by

SinceMy and by are the same across training and testing, and zi influences ai throughMs andMo, the change
inMs andMo affects the joint distribution P (y,a):

P train(y,a) ̸= P test(y,a)

Thus, the conditional distribution:

P train(y|a) = P train(y,a)

P train(a)
̸= P test(y,a)

P test(a)
= P test(y|a)

Since y and x are both derived from z through invariant transformation matrices and bias vectors, and P (z)
remains the same, the joint distribution P (y,x) remains unchanged:

P train(y,x) = P test(y,x)

Xiaoxue Han, Huzefa Rangwala, Yue Ning

Thus, the conditional distribution:

P train(y|x) = P train(y,x)

P train(x)
=
P test(y,x)

P test(x)
= P test(y|x)

The change in the joint distribution P (x,a) implies a change in the joint distribution P (y,x,a) since y depends
on both x and a:

P train(y,x,a) ̸= P test(y,x,a)

Thus, the conditional distribution:

P train(y|x,a) = P train(y,x,a)

P train(x,a)
̸= P test(y,x,a)

P test(x,a)
= P test(y|x,a)

F Important assumptions for CATE estimation

Assumption 5. (SUTVA). The potential outcomes of any unit do not vary with the treatment assigned to other
units, and, for each unit, there are no different forms or versions of each treatment level, which leads to different
potential outcomes.

We discuss the reasonableness of this assumption in section 2.1.

Assumption 6. (Consistency). The potential outcome of treatment t equals the observed outcome if the actual
treatment received is t.

Assumption 7. (Ignorability). Given pretreatment covariate X, the outcome variable Y0 and Y1 is independent
of treatment assignment, i.e. (Y0, Y1 ⊥⊥ T |X).

This assumption is also called “no unmeasured confounder”. This assumption is automatically satisfied with the
“close-world assumption” made in learning a machine learning model, which implicitly assumes that the input
data encompasses the necessary information for making accurate predictions, as we explain in section 2.1. In
our case, it implies that no other confounders besides a and x that affect the output should exist.

Assumption 8. (Positivity). For any set of covariates x, the probability to receive any treatment t is positive,
i.e., 0 < P (T = t|X = x) < 1,∀t, x.

G Derivation of the prediction function of SGC

A typical SGC makes predictions with the classifier:

ŷ = σ(SkXΘ), (15)

where S is the “normalized” adjacency matrix S = D̃− 1
2 ÃD̃

1
2 , Ã = A + I, D̃ is the degree matrix of Ã, k is

the number of layers, Θ is the parameterized weights of each layer into a single matrix: Θ = Θ0Θ1...Θk. Note
that the above equation averages the representation of all nodes at each hop, so the effect of the central node is
diminished when its neighbor size is large. Alternatively, we can assign a fixed weight 0 < γ < 1 to the central
node, and the rest 1−γ is shared by the neighboring nodes during the aggregation process, so the Sk in equation
is replaced by S′, where:

S′ = D̃
− 1

2
1 AÃkD̃

1
2
1 + D̃

− 1
2

2 ID̃
1
2
2 , (16)

where D̃1 and D̃2 are diagonal matrix such that D̃1(i, i) = (1 − γ)Dk(i, i) and D̃2(i, i) = γDk(i, i). The new
prediction function is then expressed as:

ŷi =σ(h
y
i) = σ([S′kXΘ]i) (17)

=σ
(
[D̃

− 1
2

1 AÃkD̃
1
2
1 XΘ]i︸ ︷︷ ︸

Ψ′
a(ai)

+ [(D̃
− 1

2
2 ID̃

1
2
2)
kXΘ]i︸ ︷︷ ︸

Ψ′
x(xi)

)
. (18)

DeCaf: A Framework for OOD Generalization

Inside σ(·), the first term D̃
− 1

2
1 AÃkD̃

1
2
1 XΘ models the contribution of the neighborhood nodes’ representation

(excluding central node) on hyi , we call it Ψ′
a(ai); similarly, the second term (D̃

− 1
2

2 ID̃
1
2
2)
kXΘ models the contri-

bution of the features of the central node and we call it Ψ′
x(xi). Note that the magnitudes of the diagnal matrixes

of Ψ′
a(ai) and Ψ′

x(xi) are scaled by the parameter γ. We can further rewrite Equation 18 in the unscaled form:

σ
(
γ [(D̃k)−

1
2AÃk(D̃k)

1
2XΘ]i︸ ︷︷ ︸

Ψa(ai)

+(1− γ) [((D̃k)−
1
2 I(D̃k)

1
2)kXΘ]i︸ ︷︷ ︸

Ψx(xi)

)
, (19)

where [(D̃k)−
1
2AÃk(D̃k)

1
2XΘ]i can be viewed as Ψa(ai), and [((D̃k)−

1
2 I(D̃k)

1
2)kXΘ]i can be viewed as Ψx(xi),

which aligns with asssumtion 2.

H Dual Casual Decomposition

We aim to learn two sets of g(·), h(·) for the two casual models SCM-F and SCM-A. We denote them as
gX(·), hX(·) and gA(·), hA(·), separately. Each casual model is also associated with a set of e(·),m(·), denoted
as eX(·),mX(·) and eA(·),mA(·). Unlike SIN, which learns all model parameters within the two-stage training
procedure, we allow the model to learn gX(·), hA(·), and mX(·) with shared parameters beforehand. Since
gX(a), hA(a), and mX(a) are all functions of the neighborhood representation a, whose value is determined with
a L-layer GNN model pGNN (·) that generates a neighborhood representation by aggregating the embedding of
nodes in L-hop neighborhood without including the central node.

We then map the GNN embedding to the space of hy with an MLP layer p′(·) that follows p(·).

The parameters of p(·) and p′(·), ρ, ρ′, are learned with the goal of minimizing: Jp,p′(ρ, ρ
′) =

1
n

∑n
i=1 Lmse

(
hyi ,
[
p̂′ρ′
(
p̂ρ(X, A)

)]
i

)
. As the ground truth hy is not available, while y = σ(hy) is available,

we thus apply σ(·) on both sides and minimizing the following cross entropy function instead:

Jp,p′(ρ, ρ
′) =

1

n

n∑
i=1

Lce
(
yi, σ

([
p̂′ρ′
(
p̂ρ(X, A)

)]
i

))
. (20)

We apply this alternation for the rest of the training process. With the optimized p(·), we first assign the learned
neighborhood representation to a, such that ai ≜ [p̂ρ(X, A)]i. Without losing generalizability, we assign gX(a),
hA(a) as the same as a. We then estimate mX(a), with the optimized p′(·). gX(a), hA(a), mX(a) and remain
fixed values in the rest of the learning process: gX(ai) ≜ hA(ai) ≜ ha

i ≜ ai,m
X(ai) ≜ ma

i ≜ p̂′ρ′
(
ai
)

We learn the remaining parameters for each casual model. For SCM-A, we follow the two-stage procedure:

Stage 1: Learn parameter θA of m̂θ(x) to minimize the cross-entropy loss as following: Jm(θA) =
1
n

∑n
i=1 Lce

(
yi, σ

(
m̂θA(xi)

))2
Stage 2: Learn parameter ψA for gA(·) and ηA for eA(·) with the objectives:

Jg(ψ
A) =

1

n

n∑
i=1

Lce

(
yi, σ

(
m̂θA(xi) + ĝψA(xi)

⊤(ha
i − êAηA(xi)

)))2

, Je(η
A) =

1

n

n∑
i=1

∥∥∥ha
i − êAηA(xi)

∥∥∥2
2

(21)

For SCM-F, stage 1 is no longer necessary as m̂θ(ai) is fixed as ma
i . We only need to learn parameter ϕX for

hX(·) and ηF for eX(·) with the objectives:

Jh(ϕ
X) =

1

n

n∑
i=1

Lce

(
yi, σ

(
ma
i + ha

i
⊤(ĥXϕX (xi)− êAηX (ai)

)))2

, Je(η
X) =

1

n

n∑
i=1

∥∥∥hA − êAηX (ha
i)
∥∥∥2
2

(22)

We follow the alternating optimization process in [Kaddour et al., 2021] which updates ψ, ϕ more frequently than
η to achieve a more stabilized training process.

Xiaoxue Han, Huzefa Rangwala, Yue Ning

I Complexity analysis

Consider a graph with n nodes and e edges, and an average degree d̄. A Graph Neural Network (GNN) with
L layers computes embeddings with a time and space complexity of O

(
nLd̄2

)
. When obtaining the GNN

embedding, DeCaf performs one encoder computation per update step. During training, five distinct encoders
are learned for causal models, each with a time complexity of O(n) per update step. Therefore, the overall time
complexity is O

(
nLd̄2

)
+O (5n).

We compare the complexity and requirements of DeCaf with other methods in Table 6. For EERM and
FLOOD, K is the number of augmented training environments. For CIT, K is the number of clusters and p is
the probability of transfer. As it shows, DeCaf has competitive complexity, while having the least restrictive
requirements, making it applicable to a wide range of scenarios.

Table 6: Comparision between methods.

Method Tailored
for
graphs

Multiple
training envs

Training
envs
augmentation

Access to
test
distributions

Test-time
training

Complexity

ERM N/A N/A N/A N/A N/A O
(
nLd̄2

)
IRM ✗ Required Not Required Not Required Not Required O

(
nLd̄2

)
REX ✗ Required Not Required Not Required Not Required O

(
nLd̄2

)
EERM ✓ Not Required Required Not Required Not Required O

(
K

(
nLd̄2

))
CIT ✓ Not Required Not Required Not Required Not Required O

(
nLd̄2

)
+ O(K(e + nK) + pn)

FLOOD ✓ Required Not Required Not Required Required O
(
(K + 2)

(
nLd̄2

))
SR-GNN ✓ Not Required Not Required Required Not Required O

(
nLd̄2 + n2

)
DeCaf ✓ Not Required Not Required Not Required Not Required O

(
nLd̄2

)
+ O (5n)

J Datasets and Setup

J.1 Hyperparameter Setup

The hidden size of the backbone GNNs of all methods is searched from 8, 16, 32, 64, 128, the number of heads
for GAT is searched from 4, 8, and the number of layers is 2. We use Adam as the optimizer with a learning rate
of 1e-3 and weight decay of 1e-5. For methods with penalty weights, we searched from different values centered
on their default value. For instance, for IRM, the default penalty weight is 1e5, we then conduct our search on
1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8. We follow the default setting for other hyperparameters, such as the number of
augmented views. All experiments are conducted on an NVIDIA GeForce RTX 3090 GPU with 24GB memory.

J.2 Soft label leave-out setting

In our experiments, if we have 6 classes and the training set has 80% from the first two classes, 10% from the
second two classes, and 10% from the last two classes. Then, the validation set owns 10% from the first two
classes, 80% from the second two classes, and 10% from the last two classes. Test set owns 10% from the first
two classes, 10% from the second two classes, and 80% from the last two classes.

Table 7: Statistics of real-world single graph datasets.

Cora Citeseer Amazon-photo Coauthor-CS Squirrel Roman-empire Tolokers

Node 2,708 3,327 7,650 18,333 2,223 22,662 11,758
Edge 5,278 4,552 119,081 81,894 23,499 32,927 259,500
Class 7 6 8 15 5 18 2
Feat 1433 3703 745 6,805 2,089 300 10
Metric Marco-F1 Marco-F1 Marco-F1 Marco-F1 Marco-F1 Marco-F1 F1 score

J.3 Real-word datasets

We provide the statistics of single-graph datasets in Table 7. Cora [McCallum et al., 2000],
Citeseer [Giles et al., 1998], and Coauthor-CS [Shchur et al., 2019] are citation networks.

DeCaf: A Framework for OOD Generalization

Table 8: Statistics of the Facebook-100 dataset.

Johns Hopkins Caltech Amherst Bingham Duke Princeton WashU

Node 5,180 769 2,235 10,004 9,895 6,596 7,755
Edge 373,172 33,312 181,908 725,788 1,012,884 586,640 735,082
Positive rate 43% 53% 36% 40% 39% 37% 38%

Brandeis Carnegie Penn Brown Texas Cornell5, Yale

Node 3,898 6,637 41,554 8,600 31,560 18,660 8,578
Edge 275,134 499,934 2,724,458 769,052 2,439,300 1,581,554 810,900
Positive rate 30% 47% 43% 32% 37% 37% 35%

Table 9: Statistics of the OGB-elliptic dataset.

Time slot 1-6 7-12 13-18 19-24 25-30 31-36 37-43

Node 28,571 18,525 25,985 14,337 24,878 25,920 29,684
Edge 33,835 19,613 29,274 15,296 28,223 29,689 33,659

Positive rate 11% 22% 12% 23% 12% 10% 3%

Amazon-photo [McAuley et al., 2015] is a co-purchase network where nodes represent goods for sale on
e-commerce websites. Squirrel, Roman-empire, and Tolokers are heterophilous networks created by
Platonov [Platonov et al., 2024] et al. Squirrel is a Wikipedia network, Roman-empire is created based on
the Roman Empire article from English Wikipedia, and Tolokers is created based on data from the Toloka
crowdsourcing platform, where the nodes represent tolokers (workers).

Facebook-100 [Traud et al., 2012] contains 100 social networks collected from universities in the United States.
Each node represents a student and the goal is to predict the gender of each student. We provide the statistics
of sub-datasets we use in Table 8.

OGB-elliptic [Rozemberczki et al., 2021] is a dynamic financial network dataset that contains in total of 43
graph snapshots from different time steps. Each node represents a Bitcoin transaction, and the goal is to detect
illicit transactions. We group all 43 snapshots into 7 timeslots and provide statistics for each timeslot in Table
9.

J.4 Synthetic datasets

We create three synthetic graphs to simulate the situations where node features and neighborhood representation
are dependent or independent of each other. For each graph, we randomly sample n instances of z with 16 features
from a multivariate normal distribution. We generate node features, labels, and adjacency matrices based on
the data generation process in assumption 1. By posing different constraints on Mx, My, Ms, and Mo, we
can control the dependence/ independence between node features and neighborhood representation, and their
contributions to the labels. Statistical details of these datasets are shown in Table 10.

h-feat: WhenMx can only “observe” half of the elements of z andMs,Mo can fully observe z, node features
and neighborhood representation are correlated with each other, and each of them can reveal extra information
about node label. To do so, we assignMx as a 16× 8 matrix with its first 8 rows as an identical matrix, and the
rest rows are all zeros, such that the second half elements of z do not participate in the construction of x. We
assignMs andMo to be the same size and value asMy, which is guaranteed to be a non-trivial transformation
of z.

qtr-feat: When Mx “observe” quarter of the elements of z and Ms,Mo can observe the rest three fourth,
node features and neighborhood contributes to the prediction of node labels independently. We assignMx as a
16× 4 matrix with its first 4 rows as an identical matrix, and the rest rows are all zeros. We assignMs andMo

to be the same size and value asMy, except with the first 4 rows replaced by all zeros.

full-feat: We create another graph where node features and neighborhoods contribute to the prediction of
node labels independently in an alternative way. First, we makeMx fully observe z by assigning it as a 16× 16
identical matrix; then by assigningMs andMo as zeros, we create completely random edges. We slightly modify
equation 2 to be yi =My(

1
2zi +

1
2 z̄i) + by, where z̄i is the mean z embedding of neighboring nodes of node vi,

such that the neighborhood representation can directly affect node labels.

Xiaoxue Han, Huzefa Rangwala, Yue Ning

Table 10: Statistics of synthetic datasets.

h-feat qtr-feat full-feat

Node 8,000 8,000 8,000
Edge 404,597 1,487,637 35,850
Class 4 4 4
Feat 8 4 16

Table 11: Test F1 scores on Facebook-100 dataset. The results from the GNN with the highest validation F1
score are reported. The best results are bold-faced.

Training Johns Hopkins + Caltech + Amherst Bingham + Duke + Princeton WashU + Brandeis + Carnegie

Test Penn Brown Texas Penn Brown Texas Penn Brown Texas

ERM 49.23±1.72 49.68±0.93 48.57±0.21 51.42±4.25 51.45±1.48 47.37±4.78 47.34±5.48 48.08±2.51 48.36±4.30
IRM 35.26±2.40 46.92±5.66 36.86±1.64 42.12±1.99 51.34±0.90 41.57±4.31 50.16±1.30 49.62±3.32 46.41±5.28
REX 44.77±6.48 42.65±7.34 44.05±8.88 43.77±5.72 47.26±5.75 44.36±7.82 39.67±8.59 44.65±6.67 40.28±7.59
EERM 22.62±22.91 49.44±1.92 49.12±1.71 18.91±18.99 45.95±3.74 47.83±1.17 24.40±24.62 47.58±2.91 51.27±1.04
CIT 44.66±6.65 45.26±6.21 42.10±8.97 45.82±6.46 48.62±1.88 39.79±4.74 37.99±6.54 39.66±6.58 39.88±6.27
FLOOD 42.37±5.06 41.48±5.28 40.82±5.94 46.99±7.48 47.28±5.61 44.48±5.22 41.21±7.68 46.24±8.52 40.16±6.01
StableGL 44.54±6.58 45.64±6.25 43.75±5.65 46.94±8.54 47.77±4.79 47.51±5.94 38.31±8.42 43.22±4.50 37.86±4.75
DeCaf 55.31±0.40 53.31±0.11 53.56±0.19 54.59±0.35 53.48±0.15 53.12±0.19 54.44±1.18 53.02±0.36 53.05±0.86

K Complete results

We report the complete results on facebook-100 when different sets of training graphs are used in Table 11.
With different training sets, the proposed DeCaf achieves the best classification results over three different test
sets compared with state-of-the-art OOD generalization methods.

L Limitations

This paper focuses on homogeneous graphs with limited node and edge types. In the future, we plan to extend the
method to heterogeneous graphs with more diverse node relations and neighborhood patterns. This extension will
broaden the applications of our method to domains such as social networks, healthcare, and biological networks,
where heterogeneity can provide rich information for making predictions.

M Broader Impacts

DeCaf improves the generalizability of the GNN, helping it learn a faithful mapping between inputs and out-
puts that captures true correlations. This is crucial for critical domains vulnerable to security issues, such as
cybersecurity, finance, and healthcare. Learning a robust and generalizable model under potential distribution
shifts is essential for these domains.

DeCaf: A Framework for OOD Generalization

Table 12: Test Macro-F1 scores on synthetic datasets. The best results are bold-faced.

h-feat qrt-feat full-feat

S
G
C

ERM 47.41±0.25 48.62±1.88 48.57±0.21
IRM 33.78±1.41 33.36±0.70 33.04±1.40
EERM 38.14±8.25 37.86±5.15 39.74±7.09
CIT 21.11±21.33 36.41±0.45 49.12±1.71
REX 32.87±1.12 33.85±0.50 34.47±0.82
FLOOD 39.53±8.83 37.26±4.82 39.13±6.39
StableGL 41.79±8.86 38.30±5.60 41.22±6.30
DeCaf 55.31±0.40 53.16±0.17 53.56±0.19

G
C
N

ERM 43.12±1.84 49.68±0.93 43.79±1.36
IRM 34.03±0.94 32.90±0.60 32.47±1.16
EERM 43.24±6.52 42.65±7.34 38.60±5.26
CIT 22.79±23.15 49.44±1.92 40.81±5.74
REX 33.10±1.60 35.62±2.60 34.49±0.89
FLOOD 38.58±6.60 40.07±6.76 38.58±6.57
StableGL 42.12±6.44 44.77±4.78 43.75±5.65
DeCaf 53.57±0.98 53.31±0.11 52.16±0.45

G
A
T

ERM 49.23±1.72 47.34±1.25 46.13±1.54
IRM 35.26±2.40 46.92±5.66 36.86±1.64
EERM 44.77±6.48 41.94±3.92 44.05±8.88
CIT 22.62±22.91 39.04±4.31 34.66±2.32
REX 44.66±6.65 45.26±6.21 42.10±8.97
FLOOD 42.37±5.06 41.48±5.28 40.82±5.94
StableGL 44.54±6.58 45.64±6.25 41.88±6.88
DeCaf 51.84±0.88 52.29±0.56 50.68±0.63

H
2
G
C
N

ERM 49.38±3.44 31.72±1.60 66.59±1.86
IRM 51.17±8.82 33.57±4.78 62.04±1.45
EERM 49.04±3.54 30.04±1.72 65.67±1.62
CIT 54.33±3.90 30.28±3.96 64.78±2.64
FLOOD 47.18±4.97 29.56±1.13 64.65±0.79
StableGL 39.99±2.97 37.44±5.21 63.06±4.10
DeCaf 55.92±5.20 44.96±1.78 67.02±1.12

